সান্দ্রতা ও সান্দ্রতা গুণাঙ্ক

একাদশ- দ্বাদশ শ্রেণি - পদার্থবিদ্যা - পদার্থবিজ্ঞান – ১ম পত্র | | NCTB BOOK
182
182

প্রবাহী পদার্থের পাশাপাশি সমান্তরাল দুটি স্তরের আপেক্ষিক গতির দরুন সৃষ্ট ঘর্ষণ বলের জন্য সান্দ্র প্রভাব দেখা দেয় । আমরা জানি, যে ধর্মের ফলে প্রবাহী এর বিভিন্ন স্তরের আপেক্ষিক গতিকে বাধা দেয় তাকে ঐ প্রবাহীর সান্দ্রতা বলে ।

স্তরায়িত প্রবাহে রয়েছে এমন একটি প্রবাহী বিবেচনা করা যাক। এই প্রবাহী পদার্থের এমন দুটি সমান্তরাল স্তর বিবেচনা করা যাক, যাদের প্রত্যেকের ক্ষেত্রফল A এবং এরা পরস্পর থেকে dy দূরত্বে রয়েছে (চিত্র : ৭.১৬)। এই স্তর দুটির বেগ যথাক্রমে v এবং v + dv। তাহলে দূরত্বের সাপেক্ষে বেগের অন্তরক হলো dvdy। একে বেগের নতি (velocity gradient) বলে ।

চিত্র :৭.১৬

প্রবাহী স্তর দুটির মধ্যে বেগের পার্থক্য থাকায় প্রবাহীর সান্দ্রতার জন্য তাদের মধ্যে প্রবাহের বিপরীত দিকে একটি বল ক্রিয়া করে। এ বলের মান সম্পর্কে নিউটন একটি সূত্র দিয়েছেন। এটি সান্দ্রতা সংক্রান্ত নিউটনের সূত্র নামে পরিচিত।

 নিউটনের সূত্র : প্রবাহীর দুটি স্তরের মধ্যে আপেক্ষিক বেগ থাকলে প্রবাহের বিপরীত দিকে যে স্পর্শকীয় সাম্র বল ক্রিয়া করে নির্দিষ্ট তাপমাত্রায় তার মান (F) প্রবাহীর স্তরদ্বয়ের ক্ষেত্রফল (A) এবং তাদের মধ্যকার বেগের নতি dvdy -এর সমানুপাতিক।

অর্থাৎ FAdvdy

এখানে η হলো একটি সমানুপাতিক ধ্রুবক। এর মান প্রবাহীর প্রকৃতি এবং তাপমাত্রার উপর নির্ভর করে। একে নির্দিষ্ট তাপমাত্রায় প্রবাহীর সান্দ্রতা গুণাঙ্ক বা সান্দ্রতা সহগ বলা হয় ।

(7.19) সমীকরণ থেকে দেখা যায় যে, A = 1 একক এবং y = 1 একক হলে

F=  η × 1 × 1

অর্থাৎ   η = F হয়। এ থেকে বলা যায় যে,

সংজ্ঞা : নির্দিষ্ট তাপমাত্রায় প্রবাহীর দুটি স্তরের মধ্যে বেগের নতি একক রাখতে (অর্থাৎ একক দূরত্বে অবস্থিত দুটি স্তরের মধ্যে একক আপেক্ষিক বেগ বজায় রাখতে) প্রবাহী স্তরের প্রতি একক ক্ষেত্রফলে যে স্পর্শকীয় বলের প্রয়োজন হয় তাকে ঐ তাপমাত্রায় ঐ প্রবাহীর সান্দ্রতা গুণাঙ্ক বা সান্দ্রতা সহগ বলে।

সান্দ্রতা সহগ প্রবাহীর সান্দ্রতার পরিমাপ বিশেষ। কোনো প্রবাহীর সান্দ্রতা সহগ বলতে প্রবাহীটি যে সান্দ্র প্রভাব প্রদর্শন করে তার পরিমাপকে বোঝায়। সান্দ্রতা সহগ যত বেশি প্রবাহীটি তত সান্দ্র কক্ষ তাপমাত্রায় গ্লিসারিনের সান্দ্রতা সহগ পানির চেয়ে 103 গুণ বেশি। নিউটনের সূত্র তথা (7.19) সমীকরণ সকল গ্যাসের জন্য এবং অনেক তরলের জন্য খাটে। যে সব তরলের জন্য এই সূত্র খাটে তাদের বলা হয় নিউটনীয় তরল। পানি একটি নিউটনীয় তরল। অ-নিউটনীয় তরলের

জন্য η এর কোনো ধ্রুব মান নেই। প্রকৃতপক্ষে, এসব তরলের সান্দ্রতা সহগ নেই। এরকম একটি তরল হলো তেল রং (oil paint) । 

η  মাত্রা ও একক

(7.19) সমীকরণ থেকে দেখা যায়,

η=FAdvdy

বা,  η = বল/ক্ষেত্রফল Xবেগ/দূরত্ব 

সুতরাং  η এর মাত্রা হবে উপরিউক্ত সমীকরণের ডানপাশের রাশিগুলোর মাত্রা অর্থাৎ

η=MLT2L2LT1L=ML1T1

(7.19) সমীকরণ থেকে পুনরায় পাওয়া যায়,

η=FAdvdy

এই সমীকরণের ডানপাশের রাশিগুলোর একক বসালে  η এর এস আই একক পাওয়া যায় । এ একক হলো

Nm2ms-1m

অর্থাৎ N sm -2 বা, Pas

বিজ্ঞানী পয়সুলীর নামানুসারে সান্দ্রতাঙ্কের আর একটি একক হচ্ছে পয়েস (poise) 1 N s m-2 = 10 poise

তাৎপর্য :

  পানির সান্দ্রতা সহগ 103 N s m-2 বলতে বোঝায় 1 m-2 ক্ষেত্রফলবিশিষ্ট পানির দুটি স্তর পরস্পর থেকে 1m দূরত্বে অবস্থিত হলে এদের ভেতর 1 ms-1 আপেক্ষিক বেগ বজায় রাখতে 10-3 N বলের প্রয়োজন হয়।

Content added || updated By
Promotion